Search results for "Protein conformation"

showing 10 items of 515 documents

Nucleation and Growth of CaCO3 Mediated by the Egg-White Protein Ovalbumin: A Time-Resolved in situ Study Using Small-Angle Neutron Scattering

2008

Mineralization of calcium carbonate in aqueous solutions starting from its initiation was studied by time-resolved small-angle neutron scattering (SANS). SANS revealed that homogeneous crystallization of CaCO 3 involves an initial formation of thin plate-shaped nuclei which subsequently reassemble to 3-dimensional particles, first of fractal and finally of compact structure. The presence of the egg-white protein ovalbumin leads to a different progression of mineralization through several stages; the first step represents amorphous CaCO 3, whereas the other phases are crystalline. The formation and dissolution of the amorphous phase is accompanied by Ca (2+)-mediated unfolding and cross-link…

Protein FoldingOvalbuminProtein ConformationChemistryNeutron diffractionNucleationWaterGeneral ChemistryNeutron scatteringBiochemistrySmall-angle neutron scatteringCatalysisCalcium Carbonatelaw.inventionAmorphous solidCalcium ChlorideNeutron DiffractionCrystallographyColloid and Surface ChemistrylawVateriteScattering Small AngleCrystallizationCrystallizationDissolutionJournal of the American Chemical Society
researchProduct

Glomerular basement membrane: evidence for collagenous domain of the alpha 3 and alpha 4 chains of collagen IV.

1990

Abstract A collagenous component(s) of Mr = 60K was extracted from glomerular basement membrane with urea and was purified. Upon digestion, it yielded a collagenase-resistant fragment(s) of Mr = 23.5K. Both component and fragment showed immunochemical identity with the noncollagenous domains of the new α3 & α4 chains of collagen IV. The component is characterized by a collagenous domain of about 280 residues and a noncollagenous domain of about 250 residues. These findings further establish these new chains as distinct entities of collagen IV.

Basement membraneGel electrophoresischemistry.chemical_classificationChemistryRenal glomerulusMacromolecular SubstancesProtein ConformationProtein subunitGlomerular basement membraneKidney GlomerulusBiophysicsBiological membraneCell BiologyBiochemistryBasement Membranemedicine.anatomical_structureBiochemistryDomain (ring theory)medicineAnimalsCattleCollagenAmino AcidsGlycoproteinMolecular BiologyBiochemical and biophysical research communications
researchProduct

Fasciola spp: Mapping of the MF6 epitope and antigenic analysis of the MF6p/HDM family of heme-binding proteins

2017

MF6p/FhHDM-1 is a small cationic heme-binding protein which is recognized by the monoclonal antibody (mAb) MF6, and abundantly present in parenchymal cells and secreted antigens of Fasciola hepatica. Orthologs of this protein (MF6p/HDMs) also exist in other causal agents of important foodborne trematodiasis, such as Clonorchis sinensis, Opisthorchis viverrini and Paragonimus westermani. Considering that MF6p/FhHDM-1 is relevant for heme homeostasis in Fasciola and was reported to have immunomodulatory properties, this protein is expected to be a useful target for vaccination. Thus, in this study we mapped the epitope recognized by mAb MF6 and evaluated its antigenicity in sheep. The sequenc…

0301 basic medicineParagonimus westermaniFasciola sppPhysiologyProtein ConformationFlatwormslcsh:MedicineProtein Structure PredictionBiochemistryEpitopeAntigenicEpitopes0302 clinical medicineAnimal CellsImmune PhysiologyMedicine and Health SciencesMacromolecular Structure AnalysisMF6p/HDMEnzyme-Linked Immunoassayslcsh:ScienceMammalsNeuronsImmune System ProteinsMultidisciplinaryFasciolabiologyVaccinationEukaryotaAntibodies MonoclonalRuminantsDendritic StructureVertebratesCellular TypesAntibodyResearch ArticleHemeproteinsProtein StructureAntigenicityFascioliasisHeme bindingImmunology030231 tropical medicineAntibodies HelminthEnzyme-Linked Immunosorbent AssayHemeResearch and Analysis MethodsTrematodesAntibodiesHeme-Binding Proteins03 medical and health sciencesHelminthsparasitic diseasesParasitic DiseasesFasciola hepaticaAnimalsImmunoassaysMolecular BiologySheeplcsh:ROrganismsBiology and Life SciencesProteinsCell BiologyDendritesNeuronal DendritesFasciola hepaticabiology.organism_classificationInvertebratesMolecular biologyFasciola030104 developmental biologyEpitope mappingCellular NeuroscienceAntigens HelminthAmniotesImmunologic Techniquesbiology.proteinlcsh:QCarrier ProteinsEpitope MappingNeuroscience
researchProduct

Spectral hole burning study of protoporphyrin IX substituted myoglobin.

1992

Protoporphyrin IX substituted myoglobin reveals excellent hole burning properties. We investigated the frequency shift of persistent spectral holes under isotropic pressure conditions in a range from 0 to 2.4 MPa. In this range, the protein behaves like an elastic solid. The shift of the holes under pressure shows a remarkable frequency dependence from which the compressibility of the protein can be determined. The compressibility, in turn, allows for an estimation of the equilibrium volume fluctuations. Within the frame of the model used to interpret the pressure data, it is possible to determine the absorption frequency of the isolated chromophore and the associated solvent shift in the p…

Quantitative Biology::BiomoleculesProtoporphyrin IXMyoglobinPhotochemistryProtein ConformationAnalytical chemistryFluorescence spectrometryBiophysicsProtoporphyrinsChromophorechemistry.chemical_compoundSpectrometry FluorescencechemistryMyoglobinSpectral hole burningCompressibilityAnimalsProtoporphyrinHorsesCompressibility factorResearch ArticleBiophysical journal
researchProduct

Electrostatic Tuning of the Ligand Binding Mechanism by Glu27 in Nitrophorin 7

2018

AbstractNitrophorins (NP) 1–7 are NO-carrying heme proteins found in the saliva of the blood-sucking insect Rhodnius prolixus. The isoform NP7 displays peculiar properties, such as an abnormally high isoelectric point, the ability to bind negatively charged membranes, and a strong pH sensitivity of NO affinity. A unique trait of NP7 is the presence of Glu in position 27, which is occupied by Val in other NPs. Glu27 appears to be important for tuning the heme properties, but its influence on the pH-dependent NO release mechanism, which is assisted by a conformational change in the AB loop, remains unexplored. Here, in order to gain insight into the functional role of Glu27, we examine the ef…

Models Molecular0301 basic medicineConformational changeProtein ConformationMolecular biologylcsh:MedicineSangCrystallography X-RayLigands01 natural scienceschemistry.chemical_compoundProtein structureModelsZoologiaBloodsucking insectsNitrophorinStatic electricitylcsh:ScienceHemeCell receptorschemistry.chemical_classificationCrystallographyMultidisciplinaryParasitologiaAmino acidBloodRhodniusInsect ProteinsAnimals; Crystallography X-Ray; Glutamic Acid; Heme; Hemeproteins; Insect Proteins; Ligands; Models Molecular; Molecular Dynamics Simulation; Mutation; Protein Conformation; Rhodnius; Salivary Proteins and Peptides; Static ElectricityHemeproteinsHemeproteinStatic ElectricityGlutamic AcidHemeMolecular Dynamics Simulation010402 general chemistryArticle03 medical and health sciencesAnimalsSalivary Proteins and PeptidesBiologia molecularInsectes hematòfags030102 biochemistry & molecular biologylcsh:RMolecular0104 chemical sciencesIsoelectric pointchemistryMutationX-RayBiophysicslcsh:QReceptors cel·lularsParasitologyZoologyScientific Reports
researchProduct

Principal component analysis on molecular descriptors as an alternative point of view in the search of new Hsp90 inhibitors

2009

Inhibiting a protein that regulates multiple signal transduction pathways in cancer cells is an attractive goal for cancer therapy. Heat shock protein 90 (Hsp90) is one of the most promising molecular targets for such an approach. In fact, Hsp90 is a ubiquitous molecular chaperone protein that is involved in folding, activating and assembling of many key mediators of signal transduction, cellular growth, differentiation, stress-response and apoptothic pathways. With the aim to analyze which molecular descriptors have the higher importance in the binding interactions of these classes, we first performed molecular docking experiments on the 187 Hsp90 inhibitors included in the BindingDB, a pu…

Databases FactualProtein ConformationDrug Evaluation PreclinicalCancer therapyPrincipal component analysiNaphtholsBiochemistryBinding databaseMolecular descriptorsStructure-Activity RelationshipStructural BiologyMolecular descriptorHeat shock proteinComputer SimulationHSP90 Heat-Shock ProteinsPrincipal Component AnalysisBinding SitesbiologyHeat shock proteinOrganic ChemistryComputational BiologyIsoxazolesHsp90Settore CHIM/08 - Chimica FarmaceuticaComputational MathematicsBiochemistryPurinesDocking (molecular)Principal component analysisMolecular dockingbiology.proteinPyrazolesBindingDBSignal transduction
researchProduct

De novo design of protein kinase inhibitors by in silico identification of hinge region-binding fragments.

2013

Protein kinases constitute an attractive family of enzyme targets with high relevance to cell and disease biology. Small molecule inhibitors are powerful tools to dissect and elucidate the function of kinases in chemical biology research and to serve as potential starting points for drug discovery. However, the discovery and development of novel inhibitors remains challenging. Here, we describe a structure-based de novo design approach that generates novel, hinge-binding fragments that are synthetically feasible and can be elaborated to small molecule libraries. Starting from commercially available compounds, core fragments were extracted, filtered for pharmacophoric properties compatible w…

Binding SitesMolecular StructureProtein ConformationIntracellular Signaling Peptides and ProteinsArticlesProtein Serine-Threonine KinasesCrystallography X-RayMAP Kinase Kinase KinasesImmediate-Early ProteinsCSK Tyrosine-Protein KinaseMolecular Docking SimulationSmall Molecule Librariessrc-Family KinasesDrug DesignComputer SimulationProtein Kinase InhibitorsACS chemical biology
researchProduct

All-atom simulations disentangle the functional dynamics underlying gene maturation in the intron lariat spliceosome

2018

The spliceosome (SPL) is a majestic macromolecular machinery composed of five small nuclear RNAs and hundreds of proteins. SPL removes noncoding introns from precursor messenger RNAs (pre-mRNAs) and ligates coding exons, giving rise to functional mRNAs. Building on the first SPL structure solved at near–atomic-level resolution, here we elucidate the functional dynamics of the intron lariat spliceosome (ILS) complex through multi-microsecond-long molecular-dynamics simulations of ∼1,000,000 atoms models. The ILS essential dynamics unveils (i) the leading role of the Spp42 protein, which heads the gene maturation by tuning the motions of distinct SPL components, and (ii) the critical particip…

Models Molecular0301 basic medicineProtein ConformationSplicingExonMolecular dynamicsRNA; gene maturation; molecular dynamics; spliceosome; splicingModelsRNA Small NuclearRNA PrecursorsMagnesiumPrincipal Component AnalysisMultidisciplinaryChemistrySpliceosomeFungalPhysical SciencesRNA splicingSpliceosomeRNA Splicing1.1 Normal biological development and functioningStatic ElectricityComputational biologyMolecular dynamicsMolecular Dynamics Simulation03 medical and health sciencesMotionsplicingU5 Small NuclearSmall NuclearGeneticUnderpinning researchSchizosaccharomycesGeneticsComputer SimulationGeneRibonucleoprotein U5 Small NuclearModels Geneticgene maturationIntronRNAMolecularRNA FungalRibonucleoproteinIntronsmolecular dynamicsRepressor Proteins030104 developmental biologyGene maturationHelixSpliceosomesRNANucleic Acid ConformationSchizosaccharomyces pombe ProteinsGeneric health relevancespliceosome
researchProduct

A lipid transfer protein binds to a receptor involved in the control of plant defence responses

2001

AbstractLipid transfer proteins (LTPs) and elicitins are both able to load and transfer lipidic molecules and share some structural and functional properties. While elicitins are known as elicitors of plant defence mechanisms, the biological function of LTP is still an enigma. We show that a wheat LTP1 binds with high affinity sites. Binding and in vivo competition experiments point out that these binding sites are common to LTP1 and elicitins and confirm that they are the biological receptors of elicitins. A mathematical analysis suggests that these receptors could be represented by an allosteric model corresponding to an oligomeric structure with four identical subunits.

Models Molecular0106 biological sciencesTime FactorsProtein ConformationPlasma protein bindingLigands01 natural sciencesBiochemistryProtein structureStructural BiologyReceptorAllosteryTriticumComputingMilieux_MISCELLANEOUSPlant Proteins0303 health sciencesFungal proteinfood and beveragesCell biologyBiochemistryPlant lipid transfer proteinsAllosteric SiteProtein BindingReceptorPhytophthoraLipid transfer proteinAllosteric regulationBiophysics[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologyBinding CompetitiveFungal Proteins03 medical and health sciencesTobaccoGeneticsBinding site[SDV.BC] Life Sciences [q-bio]/Cellular BiologyMolecular Biology030304 developmental biologyBinding SitesDose-Response Relationship DrugAlgal ProteinsCell MembraneElicitinCell BiologyAntigens PlantModels TheoreticalLipid MetabolismElicitinCarrier Proteins010606 plant biology & botanyFEBS Letters
researchProduct

Targeting heat shock proteins in cancer

2010

Heat shock proteins (HSPs) HSP27, HSP70 and HSP90 are powerful chaperones. Their expression is induced in response to a wide variety of physiological and environmental insults including anti-cancer chemotherapy, thus allowing the cell to survive to lethal conditions. Different functions of HSPs have been described to account for their cytoprotective function, including their role as molecular chaperones as they play a central role in the correct folding of misfolded proteins, but also their anti-apoptotic properties. HSPs are often overexpressed in cancer cells and this constitutive expression is necessary for cancer cells' survival. HSPs may have oncogene-like functions and likewise mediat…

Protein Foldingendocrine systemCancer ResearchCell SurvivalProtein ConformationCellAntineoplastic AgentsApoptosisBreast NeoplasmsHsp27NeoplasmsHeat shock proteinmedicineAnimalsHumansHSP70 Heat-Shock ProteinsHSP90 Heat-Shock ProteinsHeat-Shock ProteinsCell ProliferationbiologyCell growthCancermedicine.diseaseHsp90Hsp70Cell biologymedicine.anatomical_structureOncologyDrug Resistance NeoplasmCancer cellbiology.proteinMolecular ChaperonesCancer Letters
researchProduct